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A Note on Recurrent Random Walks on Graphs 
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We consider random walks on polynomially growing graphs for which the 
resistances are also polynomially growing. In this setting we can show the same 
relation that was found earlier but that needed more complex conditions. The 
diffusion speed is determined by the geometric and resistance properties of the 
graph. 
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1. F O R E W O R D  

In our previous papers (6 s) we presented some results on diffusion proper- 
ties of random walks (RW) on "smooth" graphs. It was ,clear that the 
smoothness condition is not very appealing, since it is hard to check for a 
given graph (although we presented some examples and pointed out our 
hope that most of the nonrandom fractal graphs have this property). This 
motivated us to present a more transparent set of conditions. The reader 
shall see that our condition on polynomially growing resistances can easily 
be verified and automatically holds for some classes of graphs. On the 
other hand, we think that this new approach may be useful for under- 
standing the strength of our earlier "smoothness" condition better. (6) 

2. I N T R O D U C T I O N  

Let us consider an infinite, locally finite connected graph G = (V, E) 
without loops. We use the convenient graph distance d(x, y), the length of 
the shortest path between x, yE V. The RW (X,),,~ X on V is a Markov 
chain with transition probabilities 

1 
P(Xn+I =ylX, ,=x)=f(x ,  y) dx 
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where 0 < dx ~< D < 0o is the number of vertices adjacent to x. In other 
words, (X,) ,~ X is a nearest neighbor RW on G. We want to study the 
mean exit time To, N from the ball Bo, N ~ centered in 0 with radius N -  1. 
We use the notation SO, N = BO, N\Bo, N-1 for the surfaces of the balls. We 
apply the useful electric network model of G placing unit resistors at the 
edges, In this sense we can speak about  the resistance R(a, b) between two 
vertices a, b ~ V or resistance R(A, B) between two sets A, B c V. Here the 
resistance between subsets means that we short-circuit the sets, i.e., they 
shrunk into a single point. Let us use the notation a ,  ~ b, to denote that 
log(a , ) / log(b , )~  1 as n-~ oo. Basically, we want to study the fractal 
dimension d(0), the resistance dimension de(0), and the random walk 
dimension dR(O), 

[Bo, NI ~ N a(~ (1) 

R(0, S0, N) ~ N 2 a~(o) (2) 

E(To, N) ~ N dR(O) (3) 

where 0 ~ V is a fixed vertex, the starting point of the RW (Xo = 0). Let us 
remark that an RW is recurrent if and only if the resistances R(0, So, N) 
tend to infinity as N ~  00. (3) In this sense it is natural to say that a RW is 
strongly recurrent if R(0, SO, N) is polynomially growing, i.e., de(0) < 2. 

Using this terminology, the main result of this paper is as follows, 

P r o p o s i t i o n  1. If an RW is strongly recurrent on a locally finite 
graph (i.e., 0 < dx ~< D < oo ) and 

R(0, x) • d(0, x) 2 a~ (x ~ V) 

then 

d . ( 0 )  = d (0 )  + 2 - d e ( 0 )  

For more formal definitions and other details we refer to ref. 8. In the rest 
of this paper we give the proof of our result, some comments, and some 
examples and counterexamples; finally, we make some remarks on the 
subject, including a general conjecture. 

3. D ISCUSSION 

3.1. The Electric N e t w o r k  Model  

One can consider the finite graph Bo, N a s  an electric network. (2'3) The 
edges are unit resistors and we apply a voltage between the poles 0 e V and 
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So, u such that the current iN(0) flowing from 0 to So, N along the network 
is unity. Here we compress the vertices of SO, N into a single one. Let us 
denote the effective resistance (2) between 0 and SO, N by 

R N = Ro, N = R ( 0 ,  SO, N) 

Let us consider the voltage Vy, y ~ Bo, u, generated by the unit current. We 
put 

and 

V o = R N 

v y = O  

for all y a S w .  One can prove that (cf. ref. 2, p. 52) for yaBo,  x 

P(Xi reaches 0 before S0,  N [ J~ 0 = y) = Vy (4) 
RN 

and if Uy is the expected number of visits of Xi to y before it reaches So, u 
(assuming X0=0) ,  then for y e B o ,  u (cf. ref. 2, p. 50) 

u,=d:y (5) 

It is clear that 

E(To, N) = 2 Uy= 2 dyvy (6) 
y~Bo,N yEBo, N 

Let us remark that we can extend the potential function on the vertex set 
to the edges by considering edges as linear resistors with unit length so that 
the potential varies linearly between the ends. We can extend the vertex set 
to the resistor network by putting W =  E x [-0, 1 ] so that we introduce an 
arbitrary orientation of the edges and we identify the "zero end" to the tail, 
the "1 end" to the head. The point w = (e, t) ~ W divides the edge from x 
to y into two pieces of length t, 1 - t, i.e., w(e, O) = x and w(e, 1 ) = y. The 
point w has 

Vw= ( 1 -  t) vx+ try 

potential, by definition. Using this convention (for a more formal definition 
see ref. 6) we can define equipotential surfaces and regions surrounded by 
them. The equipotential surface of potential level p is 

ro,:= {we p} 
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Proof of  Proposition 1. Let us use the notation TN= TO, N- The 
upper estimate for E(TN) is immediate by (6): 

E(TN)= Y', ux<~D ~. vx<~IBo, N]R(O, So, N) 
x E Bo, N x E Bo, N 

Let us observe that this step does not need the conditions. 
Now we start the lower estimate with some definitions. For brevity we 

use R N = R(O, S O ,  N ) .  Let us define 

s = SN = min{d(0, y): vy < �89 -- 1 

and choose y so that d(0, y) = s + 1 and vy < �89 N. By the definition of s 

vx >~ �89 

for all x E Bo.,. Let us consider the potential surface Fv, containing y. From 
the "shorting method ''16) we know that 

R(0; y) > R(0, r~,) = RN-- R(F~,, So, N) 

But R(Fv,, SO, N)= vy and consequently 

R(o, y) > 

On the other hand, our condition ensures that 

R(0, y) • (s + 1 )2 do 

from which it follows that 

s x N  

Consequently the number of vertices in the ball is given by 

which results in 

[Bo,,[ x N d(~ 

E(rN)= Z ux> Z vx> Z Vx>kRNIBo,,I 
x ~ BO, N x ~ BO.N x e BO.s 

and hence the statement. | 
r 

Using Kesten's terminology we can give a slightly stronger result. Let 
us define Bo, u as the "backbone" of BO, N, i.e., it consists of vertices from 
BO, N having disjoint path to 0 and to So, N. 
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Propos i t ion  2. If an RW is strongly recurrent and 

R(0, x) ~ d(0, x) 2- d~(o) 

for x e B0,N, then 

d (o) = d(o)  + 2 - d (o) 

805 

Remark  1. From the proofs it is clear that if d o = 2  but some 
circumstances ensure that from 

R(o, y) > �89 

it follows that 

d(0, y ) ~ N  

then we can get the same conclusion as in our proof. 

Remark  2. In ref. 8 we studied the corresponding Laplace operator 
with absorbing boundary (cf. also ref. 4). The submatrix QO, N of P o n  Bo, N 
is substochastic 

QO, N ( y , z ) = P ( y , z )  

The Laplace operator is 

dO, N=" Do, N-- Do, NQo, N 

where for y, z e Bo, iv 

Do, N = (G,z)y,z .o,N 

and dy, z = dy i f y  ---" z, and 0 otherwise. The smallest eigenvalue of Ao, N will 
be denoted by #N(0) and its exponent by d,(0), 

#O,N ~ N -a"(~ 

Proof  of  Proposit ion 2. It is enough to see that y chosen during the 
previous proof should belong to the backbone and the remaining part of 
the proof is working. Let us suppose that y does not belong to the back- 
bone and not connected directly to 0 or to SO, N. From the definition of the 
backbone it follows that there is a z ~ BO, N such that if we remove z, then 
y is disconnected from 0 and SO, N. But it means that vz=Vy and 
d(0, z) < d(0, y), which contradicts the choice of y. | 
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In ref. 8 we defined another set of exponents e, ca, eR, and e~, correspond- 
ing to the d's by 

log(aN(Y)) 
ea = lim sup sup (7) 

N y~ V log(N) 

where a N ( y ) - - - - b y ,  N , Ry ,  N , Ey(TN) , or # u ( y )  -1, respectively (see details in 
ref. 8). We proved in ref. 8 (Theorem 2) that for recurrent RWs 

eR--e<~eu<~eR 

where e = e + 2 - e~ - e R. This means that under the condition of Proposi- 
tion 1 or 2 we get that ~ = 0 and hence 

e , = e R = e + 2 - e ~  (8) 

R e m a r k  3. Some well-known graphs satisfy our conditions, namely 
Z d for d~<2 (cf. Remark 1) and the Sierpinski gasket (5~ embedded in the 
~r Euclidean space with dimensions 

log(d+ 1) 
d 

log(2) 

log(~/+ 3 ) - l o g ( d +  1) 
de(0) = 2 

log(2) 

R e m a r k  4. It is clear that our condition on R(0, x) for "treelike" 
d~ > 1 graphs does not hold, but for such graphs it is hoped that other 
methods can be found to study them. 

R e m a r k  5. Unfortunately, our method does not work in the case 
de(0) = 2 in general, since in this case R N can increase very slowly (e.g., 
log log N) and we have no guess on how to control the distances on a 
potential surface. We want to mention that we believe that 

dR(0) = d(0) + 2 - de(0) 

holds under quite weak assumptions for recurrent and transient RWs as 
well. 
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